
First-class functions

© Victoria Kirst (Web programming Fundamentals)

First-class functions

Functions in JavaScript are objects.

- They can be saved in variables

- They can be passed as parameters

- They have properties, like other objects

- They can be defined without an identifier

(This is also called having first-class functions, i.e. functions in JavaScript are

"first-class" because they are treated like any other variable/object.)

https://en.wikipedia.org/wiki/First-class_function

Back to the veeeeery basics

What is code?

- A list of instructions your computer can execute

- Each line of code is a statement

What is a function?

- A labeled group of statements

- The statements in a function are executed when the

function is invoked

What is a variable?

- A labeled piece of data

Recall: Objects in JS

Objects in JavaScript are sets of property-value pairs:

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing']

};

- Like any other value, Objects can be saved in variables.

- Objects can be passed as parameters to functions

Back to the veeeeery basics

What is code?

- A list of instructions your computer can execute

- Each line of code is a statement

What is a function?

- A labeled group of statements

- The statements in a function are executed when the

function is invoked

What is a variable?

- A labeled piece of data

What could it mean for a
function to be an object,

i.e. a kind of data?

Function variables

You can declare a function in several ways:

function myFunction(params) {

}

const myFunction = function(params) {

};

const myFunction = (params) => {

};

Function variables

function myFunction(params) {

}

const myFunction = function(params) {

};

const myFunction = (params) => {

};

Functions are invoked in the same way, regardless of how

they were declared:

myFunction();

const x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

"A function in JavaScript is an object of type Function"

"A function in JavaScript is an object of type Function"

In the interpreter's memory:

const x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

"A function in JavaScript is an object of type Function"

In the interpreter's memory:

15x

const x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

"A function in JavaScript is an object of type Function"

In the interpreter's memory:

15x

trueyconst x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

In the interpreter's memory:

15x

truey

...greeting

"A function in JavaScript is an object of type Function"

What this really means:

- When you declare a function, there is an object of type

Function that gets created alongside the labeled block of

executable code.

const x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

Function properties

const greeting = function() {

 console.log('hello, world');

}

console.log(greeting.name);

console.log(greeting.toString());

When you declare a function, you create an object of type
Function, which has properties like:
- name
- toString

CodePen

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
https://codepen.io/bee-arcade/pen/41df7fa89a60756f1b213bcedce3eadf?editors=1011

Function properties

const greeting = function() {

 console.log('hello, world');

}

greeting.call();

Function objects also have a call method, which
invokes the underlying executable code associated with
this function object.

CodePen

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://codepen.io/bee-arcade/pen/613eb792582d38024f679ecbacc463d4?editors=1011

Function properties

const greeting = function() {

 console.log('hello, world');

}

greeting.call();

greeting();

() is an operation on the Function object (spec)
- When you use the () operator on a Function object, it

is calling the object's call() method, which in turn
executes the function's underlying code

http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls

Code vs Functions

Important distinction:

- Function, the executable code

- A group of instructions to the computer

- Function, the object

- A JavaScript object, i.e. a set of property-value pairs

- Function objects have executable code associated

with them

- This executable code can be invoked by

- functionName(); or

- functionName.call();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function

Note: Function is special

Only Function objects have executable code associated

with them.

- Regular JS objects cannot be invoked

- Regular JS objects cannot be given executable code

- I.e. you can't make a regular JS object into a callable

function

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing']

};

bear(); // error!

Function Objects vs Objects

But you can give your object Function properties and

then invoke those properties.

function sayHello() {

 console.log('Ice Bear says hello');

}

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing'],

 greeting: sayHello

};

bear.greeting(); CodePen

https://codepen.io/bee-arcade/pen/107883c371bffa2d73ba1299becf1d38?editors=1011

Function Objects vs Objects

The greeting property is an object of Function type.

function sayHello() {

 console.log('Ice Bear says hello');

}

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing'],

 greeting: sayHello

};

bear.greeting(); CodePen

https://codepen.io/bee-arcade/pen/107883c371bffa2d73ba1299becf1d38?editors=1011

Why do we have Function objects?!

Callbacks

Function objects really come in handy for event-driven

programming!

function onDragStart(event) {

 ...

}

dragon.addEventListener('pointerdown', onDragStart);

Because every function declaration creates a Function

object, we can pass Functions as parameters to other

functions.

Creating functions within functions

Functions that create functions

In JavaScript, we can create functions from within functions
(CodePen).

https://codepen.io/bee-arcade/pen/6dc404bcb87ecc4eebca5405a9c9f269?editors=0011

Functions that create functions

In JavaScript, we can create functions from within functions
(CodePen).

A function declared within
a function is also known as
a closure.

https://codepen.io/bee-arcade/pen/6dc404bcb87ecc4eebca5405a9c9f269?editors=0011

Scope of closures

Functions declared with
function (or var) have
function scope.

- Can be referenced
anywhere in the
function after
declaration

This example works:

https://codepen.io/bee-arcade/pen/46345776e90be53893df9eb9ae6a07bd?editors=0011

Scope of closures

Functions declared with
function (or var) have
function scope.

- Cannot be referenced
outside the function

This example doesn't
work:

https://codepen.io/bee-arcade/pen/72165567caf5acb78997480f59e315c6?editors=0011
https://codepen.io/bee-arcade/pen/72165567caf5acb78997480f59e315c6?editors=0011

Scope of closures

Functions declared with
function (or var) have
function scope.

- Cannot be referenced
outside the function

This example doesn't
work:

https://codepen.io/bee-arcade/pen/72165567caf5acb78997480f59e315c6?editors=0011
https://codepen.io/bee-arcade/pen/72165567caf5acb78997480f59e315c6?editors=0011

Scope of closures

Functions declared with
const or let have block
scope

- Cannot be referenced
outside of the block.

This example doesn't
work:

https://codepen.io/bee-arcade/pen/10585e8bc4b3ffce0d774cef55c22660?editors=0011
https://codepen.io/bee-arcade/pen/10585e8bc4b3ffce0d774cef55c22660?editors=0011

Functions that return functions

CodePen

In JavaScript, we can return new functions as well.
(We kind of knew this already because bind returns a new function.)

https://codepen.io/bee-arcade/pen/425bc38b821abd46b2228bdc50f80f39?editors=0011

Functions that create functions

CodePen

https://codepen.io/bee-arcade/pen/425bc38b821abd46b2228bdc50f80f39?editors=0011

Closure: an inner function

- When you declare a function inside another function, the inner

function is called a closure.

Closure: an inner function

- Within a closure, you can reference variables that were declared

in the outer function, and those variables will not go away after

the outer function returns.

Functions that create functions

The scope of greeting is only in the makeHelloFunction

function, as well as the scope of name...

Functions that create functions

But the makeHelloFunction function returns a reference to the

function, which is an object, so the function object doesn't go away

Functions that create functions

And the function object keeps a reference to the name parameter, so

that when the created function is called...

Functions that create functions

… we see that the new function returned from

makeHelloFunction still has access to the name variable.

Functions that create functions

The idea of constructing a new function that is "partially

instantiated" with arguments is called currying. (article)

https://www.sitepoint.com/currying-in-functional-javascript/

Anonymous functions

We do not need to give an identifier to functions.

When we define a function without an identifier, we call it

an anonymous function

- Also known as a function literal, or a lambda function

Anonymous functions

We do not need to give an identifier to functions.

When we define a function without an identifier, we call it

an anonymous function

- Also known as a function literal, or a lambda function

CodePen

https://codepen.io/bee-arcade/pen/2807d226d0c18a80bb7ef821571795c8

Gotchas and style notes

Recall: Present example

CodePen

We implemented

a Present class

that had a

separate

openPresent

method.

https://codepen.io/bee-arcade/pen/0e0afb2709428488efa7b6971a9467ba

What would happen if we defined the click event handler

directly in the call to addEventListener (CodePen)?

https://codepen.io/bee-arcade/pen/566cffbdfaf4161cc0dc167447f1f094

We didn't bind this, so we have a bug:

this is the img instead of the Present object.

Fixed CodePen

https://codepen.io/bee-arcade/pen/3bc05a4d9bfcfd5ef1a0c9c8cee9a129

Fixed CodePen

https://codepen.io/bee-arcade/pen/3bc05a4d9bfcfd5ef1a0c9c8cee9a129

What would happen if we defined the click event handler

like this, with the arrow function instead (CodePen)?

https://codepen.io/bee-arcade/pen/d26124522885b518c06506f3886e986a?editors=0011

This works! Why?!

(CodePen)

https://codepen.io/bee-arcade/pen/d26124522885b518c06506f3886e986a?editors=0011

=> versus function

When you define a function using function syntax:

 const onClick = function() {

 const image = event.currentTarget;

 image.src = this.giftSrc;

 };

this is will be dynamically assigned to a different value

depending on how the function is called, like we've seen

before (unless explicitly bound with bind)

=> versus function

When you define a function using arrow syntax:

 const onClick = event => {

 const image = event.currentTarget;

 image.src = this.giftSrc;

 };

this is bound to the value of this in its enclosing context

Since we've used the arrow function in the constructor, the

this in the enclosing context is the new Present object.

Which is better style?

(A) Explicit event handler

(B) Inline event handler

Callback style

Version A: Explicit event handler

- Pros:

- Easier to read

- More modular

- Scales better to long functions, several event

handlers

- Cons:

- Because all class methods are public, it exposes the

onClick function (which should be private)

Callback style

Version A: Explicit event handler

- Pros:

- Easier to read

- More modular

- Scales better to long functions, several event

handlers

- Cons:

- Because all class methods are public, it exposes the

onClick function (which should be private)

- Need to bind explicitly

Callback style

Version A: Explicit event handler

- Pros:

- Easier to read

- More modular

- Scales better to long functions, several event

handlers

- Cons:

- Because all class methods are public, it exposes the

onClick function (which should be private)

- Need to bind explicitly

Callback style

Version B: Inline event handler

- Pros:

- Does not expose the event handler: function is

privately encapsulated

- Cons:

- Constructor logic has unrelated logic inside of it

- Will get messy with lots of event handlers, long

event handlers

Callback style

Version B: Inline event handler

- Pros:

- Does not expose the event handler: function is

privately encapsulated

- Cons:

- Constructor logic has unrelated logic inside of it

- Will get messy with lots of event handlers, long

event handlers

Advanced closures

What's the output of this program? (CodePen)

https://codepen.io/bee-arcade/pen/fdc516bdf3006cf34771fa0b25bab0db?editors=0011

Advanced closures

Closures

Within a closure, you can reference variables that were

declared in the outer function, and those variables will not

go away after the outer function returns.

Closures

The variable is not copied to the inner function; the inner

function has a reference to the variable in the outer scope.

- See this iconic StackOverflow post to learn more

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

Closures

tl;dr: Be careful with closures! For now, we are not going to

be modifying outer function variables in the closure.

