
JavaScript events in detail

© Victoria Kirst (Web programming Fundamentals)

Events in JavaScript

If you put a "click" event listener on an element, what

happens if the user clicks a child of that element?

Events in JavaScript

Example: If you click on the , will the

toggleVisibility function fire?

Events in JavaScript

Yes, a click event set on an element will fire if you click on a

child of that element

If you put a click
event listener on
the div, and the
user clicks on the

img inside that div,
then the event

listener will still fire.

Event.currentTarget vs target

You can access either the element clicked or the element to
which the event listener was attached:

- event.target: the element that was clicked /

"dispatched the event" (might be a child of the target)

- event.currentTarget: the element that the original

event handler was attached to

https://developer.mozilla.org/en-US/docs/Web/API/Event/target
https://developer.mozilla.org/en-US/docs/Web/API/Event/currentTarget

Multiple event listeners

What if you have event listeners set on both an element

and a child of that element?

- Do both fire?

- Which fires first?

(CodePen)

https://codepen.io/bee-arcade/pen/a068bd62a8981f08de0a468aafe5e44f?editors=0011

Event bubbling

- Both events fire if you click the inner element

- By default, the event listener on the inner-most

element fires first

div id="inner"

div id="outer"

This event ordering (inner-most to outer-most) is known as

bubbling. (CodePen)

https://codepen.io/bee-arcade/pen/a068bd62a8981f08de0a468aafe5e44f?editors=0011

Event bubbling

- Both events fire if you click the inner element

- By default, the event listener on the inner-most

element fires first

div id="inner"

div id="outer"

This event ordering (inner-most to outer-most) is known as

bubbling. (CodePen)

https://codepen.io/bee-arcade/pen/a068bd62a8981f08de0a468aafe5e44f?editors=0011

stopPropagation()

We can stop the event from bubbling up the chain of

ancestors by using event.stopPropagation():

See default behavior vs with stopPropagation

https://codepen.io/bee-arcade/pen/a068bd62a8981f08de0a468aafe5e44f?editors=0011
https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=0011

Event capturing

To make event propagation go the opposite direction, add a
3rd parameter to addEventListener:

event.addEventListener(
 'click', onClick, { capture: true});

This event ordering (outer-most to inner-most) is known as

capturing. (CodePen)

div id="inner"

div id="outer"

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener#Parameters
https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=1111

Event capturing

To make event propagation go the opposite direction, add a
3rd parameter to addEventListener:

event.addEventListener(
 'click', onClick, { capture: true});

This event ordering (outer-most to inner-most) is known as

capturing. (CodePen)

div id="inner"

div id="outer"

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener#Parameters
https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=1111

stopPropagation()

We can also use event.stopPropagation() in

capture-order:

See default behavior vs with stopPropagation

https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=1111
https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=0011

Some technical details...

Behind the scenes

Technically, the browser will go through both a capture
phase and a bubbling phase when an event occurs:

If we click on the div
with id="inner"...

Behind the scenes

The browser creates the target's"propagation path," or
the list of its ancestors up to root (w3c)
(target meaning the thing you clicked; not necessarily the element the event

listener is attached to)

htmlhtml

div id="inner"

html

body

div id="outer"

https://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

"Capture phase"

The browser begins at the top of the propagation path and
invokes any event listeners that have capture="true", in

path order until it gets to the target. This is the "capture
phase" (w3c)

html

body

div id="outer"

div id="inner"

https://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

"Target phase"

Then the browser invokes any event listener that was set on
the target itself. This is the "target phase" (w3c)

div id="inner"

htmlhtmlhtml

body

div id="outer"

https://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

"Bubble phase"

If the event type has bubbles=true (see click, e.g.) the
browser goes back up the propagation path in reverse

order and invokes any event listener that wasn't supposed
to fire on capture. This is the "bubble phase" (w3c)

div id="inner"

htmlhtmlhtml

body

div id="outer"

https://developer.mozilla.org/en-US/docs/Web/Events/click#General_info
https://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

stopPropagation()

Therefore stopPropagation() actually stops the rest of
the 3-phase dispatch from executing

div id="inner"

htmlhtmlhtml

body

div id="outer"

In Practice

Don't worry about:

- You never need to use capture order - you can always

use bubbling

- You don't really need to know how the browser goes

through "capture phase", "target phase", then "bubble

phase"

Do worry about:

- You do need to understand bubbling, though

- stopPropagation() also comes in handy

