
JavaScript event loop

© Victoria Kirst (Web programming Fundamentals)

Note: see talk!

(For a perfectly great talk on this, see Philip Roberts' talk:

https://www.youtube.com/watch?v=8aGhZQkoFbQ&t=1s

And for a perfectly great deep dive on this, see Jake

Archibald's blog post:

https://jakearchibald.com/2015/tasks-microtasks-queues-a

nd-schedules/

These slides are inspired by these resources!)

© Victoria Kirst (Web programming Fundamentals)

https://www.youtube.com/watch?v=8aGhZQkoFbQ&t=1s
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/

setTimeout

To help us understand the event loop better, let's learn

about a new command, setTimeout:

setTimeout(function, delay);

- function will fire after delay milliseconds

- CodePen example

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://codepen.io/bee-arcade/pen/71f9ef4daa698d0f5c80bae1fa100c1e?editors=1010

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

console.log('Point A');

(global function)

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

setTimeout(...);

(global function)

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

console.log('Point B');

(global function)

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

Call stack + setTimeout

Call Stack

onTimerDone()

Call stack + setTimeout

Call Stack

onTimerDone()

console.log('Point C');

Call stack + setTimeout

Call Stack

onTimerDone()

Call stack + setTimeout

Call Stack

onTimerDone()

querySelector('h1');

Call stack + setTimeout

Call Stack

onTimerDone()

Call stack + setTimeout

Call Stack

onTimerDone()

Call stack + setTimeout

Call Stack

Call stack + setTimeout

Call Stack

setTimeout(...);

(global function)

What "enqueues" onTimerDone?
How does it get fired?

Tasks, Micro-tasks,
and the Event Loop

Tasks and the Event Loop

Call Stack

(global function)

The JavaScript runtime can do only
one thing at a time...

setTimeout()

Tasks and the Event Loop

Call Stack

(global function)

setTimeout()

But the JS runtime runs within a browser, which can do
multiple things at a time.

Call Stack

(global function)

setTimeout()

Here's a picture of the major pieces involved in executing
JavaScript code in the browser.

Browser internal
implementation

Event
loop

Task Queue

Micro-task queue

JS execution

- Call stack: JavaScript runtime call stack. Executes the JavaScript

commands, functions.

- Browser internal implementation: The C++ code that executes

in response to native JavaScript commands, e.g. setTimeout,

element.classList.add('style'), etc.

JS execution

- Call stack: JavaScript runtime call stack. Executes the JavaScript

commands, functions.

- Browser internal implementation: The C++ code that executes

in response to native JavaScript commands, e.g. setTimeout,

element.classList.add('style'), etc.

The browser itself is

multi-threaded and

multi-process!

JS execution

- Task Queue: When the browser internal implementation

notices a callback from something like setTimeout or

addEventListener is should be fired, it creates a Task and

enqueues it in the Task Queue

JS execution

- Micro-task Queue: Promises are special tasks that execute with

higher priority than normal tasks, so they have their own

special queue. (see details here)

https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/

JS execution

Event loop: Processes the task queues.

- When the call stack is empty, the event loop pulls the next task

from the task queues and puts it on the call stack.

- The Micro-task queue has higher priority than the Task Queue.

