
Classes in JavaScript

© Victoria Kirst (Web programming Fundamentals)

Amateur JavaScript

Your code may looks like this:

- Mostly all in one file

- All global functions

- Global variables to save state

between events

It would be nice to write code in a

modular way...

ES6 classes

We can define classes in JavaScript using a syntax that is

similar to Java or C++:

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

These are often called "ES6
classes" or "ES2015
classes" because they were
introduced in the
EcmaScript 6 standard, the
2015 release

- Recall that EcmaScript is the
standard; JavaScript is an
implementation of the
EcmaScript standard

Wait a minute...

Wasn't JavaScript created in 1995?

And classes were introduced… 20 years later in 2015?

Q: Was it seriously not possible to create

classes in JavaScript before 2015?!

Objects in JavaScript

In JavaScript, there are several ways to create blueprints for

objects. Two broad approaches:

1. Functional
a. This approach has existed since the creation of the JavaScript

b. Weird syntax for people used to languages like Java, C++, Python

c. Doesn't quite behave the same way as objects in Java, C++, Python

2. Classical
a. This is the approach that just got added to the language in 2015

b. Actually just "syntactic sugar" over the functional objects in

JavaScript, so still a little weird

c. But syntax is much more approachable

https://en.wikipedia.org/wiki/Syntactic_sugar

Objects in JavaScript

In JavaScript, there are several ways to create blueprints for

objects. Two broad approaches:

1. Functional
a. This approach has existed since the creation of the JavaScript

b. Weird syntax for people used to languages like Java, C++, Python

c. Doesn't quite behave the same way as objects in Java, C++, Python

2. Classical
a. This is the approach that just got added to the language in 2015

b. Actually just "syntactic sugar" over the functional objects in

JavaScript, so still a little weird

c. But syntax is much more approachable

This approach is quite controversial.

https://en.wikipedia.org/wiki/Syntactic_sugar

Class controversy

"There is one thing I am certain is a bad part, a

very terribly bad part, and that is the new class

syntax [in JavaScript]... [T]he people who are

using class will go to their graves never

knowing how miserable they were." (source)

-- Douglas Crockford, author of JavaScript: The Good Parts;

prominent speaker on JavaScript; member of TC39 (committee

that makes ES decisions)

https://www.youtube.com/watch?v=rhV6hlL_wMc&feature=youtu.be&t=950
http://tc39wiki.calculist.org/about/people/

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

constructor is optional.

Parameters for the constructor

and methods are defined in

the same they are for global

functions.

You do not use the function

keyword to define methods.

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodOne() {
 this.methodTwo();
 }

 methodTwo() {
 ...
 }
}

Within the class, you must

always refer to other methods

in the class with the this.

prefix.

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

All methods are public, and

you cannot specify private

methods… yet.

Public fields

class ClassName {

 constructor(params) {
 this.fieldName = fieldValue;
 this.fieldName = fieldValue;
 }

 methodName() {
 this.fieldName = fieldValue;
 }
}

Define public fields by setting this.fieldName in the

constructor… or in any other function.

Class fields : ES2019

class MyClass {

 name = "toto";

 constructor(age) {

 this.age = age;

 }

}

Class fields are public

Only since ES2019 - check compatibility!

Public fields

class ClassName {

 constructor(params) {
 this.someField = someParam;
 }

 methodName() {
 const someValue = this.someField;
 }
}

Within the class, you must always refer to fields with the

this. prefix.

Private fields : ES2019

class MyClass {

 #name = "toto";

 constructor(age) {

 this.age = age;

 }

 display() {

 console.log(this.#name + " : " + this.age);

 }

}

let m = new MyClass(22);

m.display();

// console.log(m.#name + " : " + m.age); // ERROR

Only since ES2019 - check compatibility!
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Private_class_field
s

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Private_class_fields
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Private_class_fields

Getter and setter : since 2015

class Lang {

 log = [];

 set current(name) {

 this.log.push(name);

 }

 get latest() {

 if (this.log.length === 0) {

 return undefined;

 }

 return this.log[this.log.length - 1];

 }

}

let lang = new Lang();

console.log(lang.latest);

lang.current = 'FR';

lang.current = 'EN';

console.log(lang.latest);

console.log(lang.log);

Ouvrons nos cadeaux ….

Ouvrons nos cadeaux ….

Don't forget this

If the event handler function you are passing to

addEventListener is a method in a class, you

must pass "this.functionName"

this in event handler

Right now we access the image we create in the

constructor in openPresent via event.currentTarget

this in event handler

Q: What if we make the image a field and access it in

openPresent via this.image instead of

event.currentTarget?

this in event handler

Error message!
What's going on?

JavaScript this

The this keyword in JavaScript is dynamically assigned, or

in other words: this means different things in different

contexts (mdn list)

- In our constructor, this refers to the instance

- When called in an event handler, this refers to… the

element that the event handler was attached to (mdn).

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this#As_a_DOM_event_handler

this in event handler

That means this refers to the element, not the

instance variable of the class...

...which is why we get this error message.

Solution: bind

To make this always refer to the instance object for a

method in the class (i.e. to get this to behave as you'd expect), you

can add the following line of code in the constructor:

this.methodName = this.methodName.bind(this);

Solution: bind

Now this in the openPresent method refers to the

instance object

Moral of the story:

Don't forget to bind()

event listeners in your

constructor!!

One more time:

Don't forget to bind()
event listeners in your

constructor!!

Example: Buttons

We want to:

- Fill the <div id="menu"></div> with buttons A, B, and C

- Update the <h1> with the button that was clicked

- Live example

https://codepen.io/bee-arcade/live/b0ae765cc6ccf3187c03afda2b2e085c

First step: Create a Button class and create three

Buttons. (CodePen)

https://codepen.io/bee-arcade/pen/713c9d676251dd8f43b13ca8cf2df160?editors=1010

Click handler for Button

Let's make it so that every time we click a button, we print

out which button was clicked in the console. (Live)

https://codepen.io/bee-arcade/live/3635971ec4c5a8caa97d262922e5bc89

Starting with this definition of Button...

An initial attempt might look like this. (CodePen)

https://codepen.io/bee-arcade/pen/8d2f166e69166dc9af1051f64437c959?editors=1010

An initial attempt might look like this. (CodePen)

https://codepen.io/bee-arcade/pen/8d2f166e69166dc9af1051f64437c959?editors=1010

But when we run it, that gives us "clicked:

undefined" (CodePen) Why?

https://codepen.io/bee-arcade/pen/8d2f166e69166dc9af1051f64437c959?editors=1010

That's because the value of this in onClick is not

the Button object; it is the <button> element to

which we've attached the onClick event handler.

What?!?

this in JavaScript

this in the constructor

In the constructor of a class,

this refers to the new object

that is being created.

That's the same meaning as

this in Java or C++.

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

}

this in the constructor

Here's roughly the

equivalent code in

Java. this refers to

the new object that is

being created.

// Java

public class Point {

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int x;

 public int y;

}

this in Java

In Java, this always refers to the new instance being

created, no matter what method you're calling it from, or how

that method is invoked.

// Java

public class Point {

 ...

 String toString() {

 return this.x + ", " + this.y;

 }

}

this in JavaScript

class Point {

 ...

 toString() {

 return this.x + ", " + this.y;

 }

}

But in JavaScript, this can have a different meaning if used

outside of the constructor, depending on the context in which

the function is called.

this in JavaScript

 toString() {

 return this.x + ", " + this.y;

 }

In JavaScript, this is:

- A implicit parameter that is passed to every JavaScript

function, including functions not defined in a class!

- The value of the this parameter changes depending on

how it is called.

this in addEventListener

function onClick() {

 console.log('Clicked!');

 console.log(this);

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

When used in an event handler, this is set to the element to

which that the event was added. (mdn / CodePen / live)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this#As_a_DOM_event_handler
https://codepen.io/bee-arcade/pen/cafeec100be0b575b9c078bc4df5657c?editors=1111
https://codepen.io/bee-arcade/live/cafeec100be0b575b9c078bc4df5657c

function onClick() {

 console.log('Clicked!');

 console.log(this);

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

In onClick, this refers to <button> because it onClick
was invoked by addEventListener.

Let's revisit our undefined text… (CodePen)

https://codepen.io/bee-arcade/pen/8d2f166e69166dc9af1051f64437c959?editors=1010

In the constructor, this refers to the new object we're
creating. No problems here.

But in onClick, this will mean something different
depending on how the function is called.

That is because we are using this in a function that is not
a constructor.

Specifically, because onClick is attached to the
<button> via addEventListener...

...we know the value of this will be the <button>
element when the click event is fired and invokes
onClick.

Since HTMLButtonElement doesn't have a text
property, this.text is undefined.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLButtonElement

It'd be nice if we could set the value of "this" in onClick

to be the Button object, like it is in the constructor.

...

"Bind" the value of this

That is what this line of code does:

"Hey, use the current value of this in onClick"
(And the current value of this is the new object, since we're in the constructor)

CodePen / Live

https://codepen.io/bee-arcade/pen/3635971ec4c5a8caa97d262922e5bc89
https://codepen.io/bee-arcade/live/3635971ec4c5a8caa97d262922e5bc89

bind in classes

constructor() {

 const someValue = this;

 this.methodName = this.methodName.bind(someValue);

}

This is saying:

- Make a copy of methodName, which will be the exact same as

methodName except this in methodName is always set to the

someValue

- The value of someValue is this to bind(), which is the value

of the new object since we are in the constructor

bind in classes

constructor() {

 this.methodName = this.methodName.bind(this);

}

And of course, you don't need the intermediate someValue

variable.

CodePen / Live

https://codepen.io/bee-arcade/pen/3635971ec4c5a8caa97d262922e5bc89
https://codepen.io/bee-arcade/live/3635971ec4c5a8caa97d262922e5bc89

One more time...

this in the constructor

this in the constructor refers to the new object you are

creating.

constructor(x, y) {

 this.x = x;

 this.y = y;

}

this in a function

this in a function that is not a constructor has a different value,

depending on how the function is called.

onClick() {

 console.log(this.x);

 console.log(this.u);

}

- When invoked as a response to an event, the this in

onClick will be Event.targetElement, or the

element onto which the onClick event handler was

attached.

A consistent this

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

 onClick() {

 console.log(this.x);

 console.log(this.u);

 }

}

Right now, this in the
constructor always refers
to the new object we're
creating...

A consistent this

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

 onClick() {

 console.log(this.x);

 console.log(this.u);

 }

}

But this in onClick
function refers to a
different value,
depending on how
onClick is called.

A consistent this

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

 onClick() {

 console.log(this.x);

 console.log(this.u);

 }

}

It'd be nice if we could make
the "this" value in
onClick:

- Refer to the new object
we're constructing,
instead of things like the
dom element, etc

- And make it always refer
to the new object we're
constructing

A consistent this

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 this.onClick = this.onClick.bind(someParam);

 }

That's what bind does:

- It is saying, "Hey, in the onClick function, I want the
this value to always be someParam," i.e. the value
that we are passing as a parameter to bind.

A consistent this

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 this.onClick = this.onClick.bind(someParam);

 }

 onClick() {

 console.log(this.x);

 console.log(this.u);

 }

}

We want the value of this in
onClick to be the value of the new
object being created.

In other words, we want someParam
to be the value of the new object
being created.

A consistent this

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 this.onClick = this.onClick.bind(someParam);

 }

 onClick() {

 console.log(this.x);

 console.log(this.u);

 }

}

In the constructor, how do
we access the new object
being created?

A consistent this

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 this.onClick = this.onClick.bind(this);

 }

 onClick() {

 console.log(this.x);

 console.log(this.u);

 }

}

In the constructor, the new
object is referenced by
this.

Now the this in onClick
always referring to the new
object.

What were we
trying to do again?

Example: Buttons

We want to:

- Fill the <div id="menu"></div> with buttons A, B, and C

- Update the <h1> with the button that was clicked

- Live example

https://codepen.io/bee-arcade/live/b0ae765cc6ccf3187c03afda2b2e085c

(Contrived) OO example

For practice, we'll write this using 2 classes:

Menu:

- Has an array of Buttons

- Also updates the <h1> with what was

clicked

Button:

- Notifies Menu when clicked, so that

Menu can update the <h1>

Menu

PresentPresentButton

Has a list of
Buttons

Partial solution: We create a Menu class, which

creates the Buttons (CodePen)

https://codepen.io/bee-arcade/pen/dbd02b9a9301acb969af0fa749168994

Then we create the Menu (and the menu creates the

Buttons) when the page loads. (CodePen)

https://codepen.io/bee-arcade/pen/dbd02b9a9301acb969af0fa749168994

Update Menu when Button clicked

Our current Menu doesn't do much.

Update Menu when Button clicked

We want the Menu to update the <h1> when one of the

Buttons are clicked. How do we do this?

Communicating upstream

Menu

Button

Button is the thing that
knows it was clicked...

Has a reference to

Communicating upstream

Menu

Button

But Menu is the thing that
can update the header.

Has a reference to

Communicating upstream

Menu

Button

It needs to be possible for a
Button to tell the Menu that it

has been clicked.

Has a reference to
"I was clicked!"

One strategy for doing this:
Custom events

Custom Events

You can listen to and dispatch Custom Events to

communicate between classes (mdn):

const event = new CustomEvent(

 eventNameString, optionalParameterObject);

element.addEventListener(eventNameString,

functionName);

element.dispatchEvent(eventNameString);

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

Custom Events on document

CustomEvent can only be listened to / dispatched on HTML

elements, and not on arbitrary class instances.

Therefore we are going to be adding/dispatching events on

the document object, so that events can be globally

listened to/dispatched.

document.addEventListener(eventNameString,

functionName);

document.dispatchEvent(eventNameString);

Define a custom event

We'll define a custom event called 'button-click':

Menu will listen for the event:

document.addEventListener(

 'button-click', this.showButtonClicked);

Button will dispatch the event:

document.dispatchEvent(

 new CustomEvent('button-click'));

A first attempt: We should listen for the custom

'button-click' event in Menu.

A first attempt: Listen for the custom 'button-click'

event in Menu. Note the call to bind! (CodePen)

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010

A first attempt: Listen for the custom 'button-click'

event in Menu. Note the call to bind! (CodePen)

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010

Then we want to dispatch the 'button-click' event in

the onClick event handler in Button.

Dispatch the 'button-click' event in the onClick

event handler in Button (CodePen).

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010

Dispatch the 'button-click' event in the onClick

event handler in Button (CodePen).

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010

When we try it out, the event dispatching seems to

work… but our output is "null was clicked"

(CodePen / Live)

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010
https://codepen.io/bee-arcade/live/2b5ab50df0f693ad81e6816f190439e8

The problem is we are adding custom event listeners

to document, meaning event.currentTarget is

going to be document, and not <button>

Communicating upstream

Menu

Button

Menu knows some button was
clicked… How do we tell the
Menu which button was

clicked?

Has a reference to
"Button B was
clicked!"

CustomEvent parameters

You can add a parameter to your CustomEvent:

- Create an object with a detail property

- The value of this detail property can be whatever

you'd like.

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events#Adding_custom_data_%E2%80%93_CustomEvent()

CustomEvent parameters

You can add a parameter to your CustomEvent:

- The event handler for your CustomEvent will be able

to access this detail property via Event.detail

Finished CodePen

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events#Adding_custom_data_%E2%80%93_CustomEvent()
https://codepen.io/bee-arcade/pen/b0ae765cc6ccf3187c03afda2b2e085c?editors=0010

