
Introduction

What is internet?

Wikipedia : a global system of interconnected computer
networks

Network access

IP

SSL/TLSTCP

Applications

Addressing

Transport

What is the web?

● Wikipedia: an information system where documents
[…] are accessible over internet

● Relying on a client-server architecture
● Mainly standardized by the W3C consortium

○ HTML, CSS, …
● Other important technologies standardized by the IETF

○ HTTP, TCP, ...
● W3C and IETF technologies are implemented in

open-source or industrial programs
○ Browsers (Firefox, Chrome, …)
○ Web servers (Apache, Nginx, …)

The client-server architecture

Client (Browsers) (Web) Server

Hey! I am a client
and I want a
resource!

Yo! I am a server and
I have plenty of
resources

What the heck is a browser?

● Native program that allows a user to transparently access
web resources

● Also, it can execute arbitrary code (JavaScript code only)
● Nowadays, shipped by default in most desktop operating

systems
○ Safari on Mac OS
○ Edge on Windows
○ Firefox on Linux distributions
○ But the more famous is Chrome 😊

Browsers in practice

What the heck is a web server?

● A web server is nothing more than a
normal machine connected to internet

● However, it has a special program,
always running that listens to every
incoming TCP connections

● And replies accordingly
● If you want, your laptop can become a

web server : install Apache

Web servers in practice

A web application in a nutshell

http://www.example.com

Hey web browser! Can you
retrieve for me the marvelous
http://www.example.com
homepage?

A client

http://www.example.com

A web application in a nutshell

http://www.example.com

A client
Example.com

server

www.example.com
server do you have
this resource?

Network
message

http://www.example.com

A web application in a nutshell

http://www.example.com

A client
Example.com

server

Of course! Here it
is.

Awesome!

Network
message

http://www.example.com

A step back

This was a rather handwavy explanation!
All started by entering http://www.example.com in the
browser what is this?

http://www.example.com

A Uniform Resource Locator (URL)

http://www.example.com: no user, no password, no port
(in this case the default 80 port is used), no url-path (in this
case the default resource will be retrieved)

But wait www.example.com is not an IP address! How
am I going to establish a network connection?

http://www.example.com
http://www.example.com

Domain Name System (DNS)

Can I have the IP
address of
www.example.com?

A client DNS server

UDP network
message

Sure! It’s
93.184.216.34

Domain Name System (DNS)

A client DNS server

UDP network
message

Under the hood

IP address of
www.example.com

Back to the resource exchange

A client Server at
93.184.216.34

How does the client tell the server that it wants
the default resource?

Via a dedicated protocol : http://www.example.com

Hypertext Transfer Protocol (HTTP)

● Document exchange protocol based upon TCP
● Relying on a request-response model

○ Client sends request to server
○ Server sends response to client

● Several types of requests : GET to retrieve a resource

A client Server at
93.184.216.34

TCP connection

GET /

/ content

Client’s request

Server’s response

Headers

Telnet client for raw TCP connections

Data

Headers have drastic effects!

HTML

● Client-server applications running through the web
● Users interact with them using a browser
● Competitive advantage : no deployment!
● Major drawbacks :

○ Web GUIs are not so great
○ Severe cost and technical challenges w.r.t. servers
○ Works often poorly when the network is down

Web applications

Static web applications

GET /INDEX.HTML

/VAR/WWW/INDEX.HTML

200 OK

Server-dynamic web applications

GET /INDEX.PHP

/VAR/WWW/INDEX.PHP

200 OK

HTML

Server and client-dynamic web applications

HTTP GET /INDEX.PHP

/VAR/WWW/INDEX.PHP

200 OK

HTML
JAVASCRIPT

JAVASCRIPT

HTML

Previously ...

A client Server at
93.184.216.34

TCP connection

GET index.html

index.html content

A static web application

/VAR/WWW/INDEX.HTML

Take home message

Mastering static web applications is the same as mastering
resources that are placed on a web server

● HTML resources (a logical document) today
● CSS resources (aesthetic properties) next episode
● Some binary resources

Before digging deeper, let’s get back to a more boring
resource : a text resource

● Computer memories store sequences of 0 and 1 (bits)
this is not text

● Then how to make text out of bits?
● We need a technique to encode/decode text characters

to/from bits
● Decoded characters are shown to the user using images

installed in the OS : fonts
● OK! So what is 011011000110111101101100 ?

Plain old text

The ASCII table

useless

Plain old text

01101100 01101111 01101100

L LO

Problem: 7 bits are 128 values, far less than all
possible text characters!

In the hell of the ISO-* tables

Let’s use this
damn bit!

Yay! Extra 128 characters! One encoding/decoding
table per language though 😢

The UTF tables

Variable-length text characters, using the last bit!
Nearly perfect solution, UTF-8 is 👑

Why this fuss about text?

HTML resources contains primarily text, so you have to know
how it works unless you like showing � to the users

● You’ll need to know what “kind” of text your editor
produces

● You’ll have to tell the browser which table to use to
decipher your text

Now: Hypertext Markup Language (HTML)

● We just saw how to encode text characters into a
sequence of bits

● Similarly, HTML encodes a tree into a text (i.e. a
sequence of text characters)

● Before presenting HTML, I will present the more general
eXtended Markup Language (HTML is a special case of
XML)

● You’ll learn one language for free, how cool is that?

A sample XML tree

A

node (or element)
foo="bar"
baz="oof" attributes

B C

C A
free
text!

piz="za"

1

1 2

2

text node

XML tree traversal

A

A node (or element)
foo="bar"
baz="oof"

Attributes

B C

C A
free
text!

piz="za"

1

1 2

2

● When entering a node,
output a opening tag
(<a>) with attributes

● When exiting a node
output a closing tag
()

● For free text, just recopy
the free text

Rules :

XML tree traversal

A

A node (or element)
foo="bar"
baz='oof'

Attributes

B C

C A
free
text!

piz="za"

1

1 2

2

 <c>
 </c>
 A free text!

 <c piz="za"/>

XML code :

Free text white-spaces peculiarities

It·is···an·awesome·text!↵
↵

␣indented text!

It·is·an·awesome·text!
·indented·text!

Original text: Parsed text:

Don’t put too much effort in formatting your free text
😉

XML/HTML entities and comments

● Trouble ahead : imagine your free text contains <
● You have entities that are of the form <

○
○ &
○ >

● You can put comments using the following weird syntax
<!-- awesome comment -->

XML superpower

● Awesome language to define a user-format without
having the burden of writing a parser

● You want to store a list of students in a text file?

<students>
 <student id="1">
 <first_name>Joe</first_name>
 <last_name>Bar</last_name>
 </student>
</students

Nice! But what about damn HTML?

● HTML is just a particular case of XML where you don’t
get to choose nor the node labels neither the attributes

● In fact XHTML is the particular case of XML, HTML has
one particularity

● Some tags, which are known to be leaf tags, do not need
closing tags (i.e.
)

● In the remainder we will focus on HTML 5 (beware of
outdated online doc! protip: no longer exists 😉)

A HTML skeleton

<!DOCTYPE html><!-- HTML5 document -->
<html>
 <head>
 <!-- metadata -->
 </head>
 <body>
 <!-- content -->
 </body>
</html>

Categories of HTML tags

Metadata Tags Body Tags

Sectioning
Tags

Flow
Tags

Phrasing
Tags

Binary
Tags

Go into <head> Go into <body>

Metadata tags, the best-of

● <title>Browser tab’s title not the real title</title>
● <meta>

○ <meta charset="utf-8">
○ Perfect example of a tag without closing tag because HTML knows

it has no children
● <script src="mycode.js"></script>
● <style>
● <link href="style.css" rel="stylesheet">

Body tags

The four categories goes from the most abstract tags
(indicating the structure of the resources) to the most
low-level tags. The order is:

1. Sectioning
2. Flow
3. Phrasing
4. Binary

Sectioning tags, the best-of

● <header>
● <footer>
● <section>
● <article>
● <aside>
● <div>

Flow tags, the best-of

● <p>a paragraph</p>
● Google!
● a bulletan other
● <table><tr><td>line1 col1</td></tr></table>
● <h1>..<h6>
● <div>

Phrasing tags, the best-of

●
●
● <mark>
●

Binary tags, the best-of

●
● <audio src="sound.mp3">
● <video src="movie.mp4">

CSS

My blog

Ugly 🤮

How do I turn

This Into this?

Cascading Style Sheets

A CSS rule has a selector and contains multiple
declarations (here one):

selector {
property: value;

}

How does that works?

selector {
property: value;

}

The selector selects a subset
of the HTML tree’s nodes and
apply the declaration to them

Declaration have graphical
meaning that will be applied
by the browser

html

head body

h1 p section

p

First example with the joker selector

* {
color: red;

}

html

head body

h1 p section

p

color: red

color: red color: red

color: red color: red

color: red

color: red

The tag selector

p {
color: red;

}

html

head body

h1 p section

ph2 p

Selector union

h1, h2 {
font-weight: bold;
color: red;

}

html

head body

h1 p section

ph2 p

font-weight: bold
color: red

font-weight: bold
color: red

Multiple rules

h1, h2 {
font-weight: bold;

}

h1 {
color: red;

}

html

head body

h1 p section

ph2 p

font-weight: bold

font-weight: bold

color: red

The parent-child selectors

Selects all paragraphs that
are descendants of a body

body p {
color: red;

}

html

head body

h1 p section

ph2 p

The parent-child selectors

Selects all paragraphs that
are direct children of a
body

body > p {
color: red;

}

html

head body

h1 p section

ph2 p

The sibling selectors

Selects all paragraphs that
are (right) siblings of a h2

h2 ~ p {
color: red;

}

html

head body

h1 p section

ph2 p

The sibling selectors

Selects all paragraphs that
are direct (right) siblings of
a h2

h2 + p {
color: red;

}

html

head body

h1 p section

ph2 p

Attribute-based selection

Selects all paragraphs that
are direct children of a
body

img[alt='foo'] {
color: red;

}

html

head body

h1 p section

imgh2 img alt='foo'

ID-based selection

What if I want just to select
this paragraph? It’s kind of
boring (and dangerous) to
write a selector for it

html

head body

h1 p section

ph2 p

ID based selection

#foo {
color: red;

}

html

head body

h1 p section

ph2 p id='foo'

Class-based selection

html

head body

h1 p section

ph2 p

What if I want just to select
these nodes together? OK I
can always use selector
union, but if the group is
large it will quickly become
booooring!

Class-based selection

html

head body

h1 class='foo' p section

ph2 class='foo' p

.foo {
color: red;

}

Pseudo class selection

p:first-of-type {
color: red;

}

html

head body

h1 p section

ph2 p

Neat! But how I give CSS to a HTML resource?

A client Server
TCP connection

GET index.html

index.html content

But wait! What’s going on when there is an image in
the page? It’s not part of the content!

A more realistic resource exchange

In fact:

OK!

When the browser receives a HTML resource, it scans
it and asks to the server all embedded resources

Download of embedded resources

In fact:

OK!

When the browser receives a HTML resource, it scans
it and asks to the server all embedded resources

Back to CSS inclusion, the king’s way

<! doctype html>
<html>
 <head>
 <link href='my.css' rel='stylesheet'>
 </head>
 <body>
 <p>Yay</p>
 </body>
</html>

Back to CSS inclusion, the quick way

<! doctype html>
<html>
 <head>
 <style>h1 { color: red; }</style>
 </head>
 <body>
 <p>Yay</p>
 </body>
</html>

Back to CSS inclusion, the dirty way

<! doctype html>
<html>
 <head>
 </head>
 <body>
 <p style='color: red; font-weight:
bold'>Yay</p>
 </body>
</html>

Back to CSS rules with a 🤯 example

html

head body

h1 class='foo' p section

ph2 class='foo' p

.foo {
color: red;

}
h1 {

color: blue;
}

color: ???

color: red

Who wins ⚔ ?

CSS specificity

● Each declaration has a four-dimensional specificity vector
coming from its selector

● First (right) dimension: number of tags in the selector (i.e.
body > html has [0, 0, 0, 2])

● Second dimension: number of classes or attributes in the
selector (i.e. body + p.foo has [0, 0, 1, 2])

● Third dimension: number of ids in the selector (i.e. body
> #foo has [0, 1, 0, 1])

● Fourth dimension: 1 if the declaration comes from a style
attribute (has [1, 0, 0, 0])

● When two conflicting declarations (i.e. color: red;
and color: blue;) are given via two selectors: fight!

● The corresponding specificity vectors are compared left
to right

● As soon as one has a greater value in the i-th dimension,
it wins! Example: [0, 0, 3, 2] > [0, 0, 2, 4]

● In case of egality, last defined rule wins (yuck)!
● To give priority to a loser declaration, you can use:

h1 {
color: red !important;

}

CSS specificity comparison

Quick poll

Who wins?

● body #foo p.bar h1
● body #foo #baz
● *

Quick poll

Who wins?

● body #foo p.bar h1 [0, 1, 1, 3]
● body #foo #baz [0, 2, 0, 1]
● * [0, 0, 0, 0]

I still don’t know are things are displayed!

OK let’s dig into that now. First thing to know is that there are
block elements and inline elements

For instance how do you think the following HTML will be
displayed?

<h1>Hello World!</h1>
<p>Yay it’s an awesome text
paragraph!</p>

Result

Hello World!

Yay it’s an awesome text paragraph!

How come the h1 is alone on this line whereas
awesome is in the same line as the p’s text?

Block and inlines

Because

● h1 and p are block elements (as all sectioning and flow
tags are)

● em is an inline element (as all phrasing tags are)

Block elements

● Flows from top to bottom, alone on their lines
● Can have a width, a height and a custom position

○ width: 200px; height: 20%;
● Example

Width

Height

Inline elements

● Flows from left to right, automatically going to a new line
● Have automatic width and height and no custom position
● Cannot have children
● Example:

Tweaking the size of block elements

Lorem ipsum, lorem ipsum,
lorem ipsum

border

margin

padding

Inline elements have only left and right margin/padding

top

bottom

left right

Margin, padding and border properties

Border:

● border: 1px solid
red;

● border-top: 1px
solid red;

● border-width: 3px;
● border-style:

dotted;
● border-color: red;
● border-top-width:

3px;

Margin (same for padding):

● margin: 2px;
● margin: 1em;
● margin: 50%;
● margin: auto;
● margin-top: 1px;
● margin: 1px 2px;

And what if I want this?

Positioned block

Blocks can have custom positions, not following the classic
rules previously presented

● position: static; default one (already explained)
● position: absolute; these blocks are positioned

w.r.t. to the whole page
● position: fixed; these blocks are positioned w.r.t. to

the browser’s window
● position: relative; these blocks are positioned

w.r.t. to their parent
● position: sticky; hard to explain, but fun! Test it

Example of a positioned block

#mydiv {
 position: fixed;
 top: 10px;
 right: 10px;
 z-index: 10;
}

Multi-column layouts

How the hell do I do this 🤔

Historial solution : inline-block

● Elements with display: inline-block; can go side
by side (as inline ones)

● They can also have a custom size / position
● Best of both worlds

Example

#left {
 display: inline-block;
 width: 50%;
 margin: 0;
 padding: 0;
 background-color: red;
}

#right {
 display: inline-block;
 width: 50%;
 margin: 0;
 padding: 0;
 background-color: blue;
}

Multi-column layouts in the new age: flexbox

#container {
 display: flex;
 background-color: blue;
}

.column {
 flex: 50%;
 background-color: red;
}

Go make your blog a beauty

● Use the CSS we learned to improve the design of the
blog developed previously

● Try to change fonts, colors
● Try to use a columned layout
● Try to put a title bar
● Validate constantly your CSS
● Use the browser inspector to debug it

